Complete Problem Definition Guide#
This comprehensive tutorial covers all of MAPTOR’s problem definition capabilities. After completing this guide, you’ll understand how to construct any type of optimal control problem using MAPTOR’s unified framework.
Prerequisites: Complete the Getting Started guide first to understand the basic workflow.
Scope: This tutorial covers the complete problem definition API, from simple single-phase problems to complex multiphase missions with design optimization.
Problem Construction Framework#
MAPTOR uses a builder pattern for constructing optimal control problems. You incrementally define phases, variables, dynamics, and constraints before solving. This systematic approach handles everything from simple trajectory optimization to complex multiphase missions.
import maptor as mtor
# Create the problem container
problem = mtor.Problem("My Optimal Control Problem")
# Define a phase (trajectory segment)
phase = problem.set_phase(1)
A phase represents one segment of your trajectory with its own time domain, dynamics, and constraints. Simple problems have one phase; complex missions have multiple phases with automatic linking.
Time Variable Definition#
Each phase needs a time coordinate with complete constraint flexibility for both initial and final times:
Initial Time Constraints:
# Fixed initial time
t = phase.time(initial=0.0)
# Bounded initial time range
t = phase.time(initial=(0.0, 5.0))
# Upper bounded initial time
t = phase.time(initial=(None, 10.0))
# Lower bounded initial time
t = phase.time(initial=(2.0, None))
# Unconstrained initial time (optimization variable)
t = phase.time(initial=None)
Final Time Constraints:
# Fixed final time
t = phase.time(initial=0.0, final=10.0)
# Free final time (optimization variable)
t = phase.time(initial=0.0, final=None)
# Bounded final time range
t = phase.time(initial=0.0, final=(8.0, 12.0))
# Upper bounded final time
t = phase.time(initial=0.0, final=(None, 15.0))
# Lower bounded final time
t = phase.time(initial=0.0, final=(5.0, None))
Combined Time Constraints:
# Both endpoints free with bounds
t = phase.time(initial=(0.0, 2.0), final=(8.0, 12.0))
# Mixed constraint types
t = phase.time(initial=0.0, final=(None, 20.0))
The time variable t
provides .initial
and .final
properties for use in objectives and constraints. Free final time enables minimum-time problems via problem.minimize(t.final)
.
State Variable Specification#
States represent quantities that evolve according to differential equations, with comprehensive constraint specification:
Initial State Constraints:
# Fixed initial value
altitude = phase.state("altitude", initial=0.0)
# Bounded initial range (uncertainty in starting condition)
position = phase.state("position", initial=(0.0, 5.0))
# Upper bounded initial
fuel = phase.state("fuel", initial=(None, 1000.0))
# Lower bounded initial
speed = phase.state("speed", initial=(50.0, None))
# Unconstrained initial (optimization variable)
free_start = phase.state("free_start", initial=None)
Final State Constraints:
# Fixed final value (exact target)
x_target = phase.state("x_position", final=1000.0)
# Bounded final range (target region)
landing_zone = phase.state("landing_x", final=(990.0, 1010.0))
# Upper bounded final (maximum allowed)
max_altitude = phase.state("altitude", final=(None, 5000.0))
# Lower bounded final (minimum required)
min_speed = phase.state("speed", final=(100.0, None))
# Unconstrained final
free_end = phase.state("free_end", final=None)
Path Constraints (Continuous Bounds):
# Two-sided path bounds
altitude = phase.state("altitude", boundary=(0.0, 10000.0))
# Upper path bound only
speed = phase.state("speed", boundary=(None, 250.0))
# Lower path bound only
fuel_mass = phase.state("fuel", boundary=(0.0, None))
# Fixed path value (constant throughout)
constant_param = phase.state("param", boundary=5.0)
Complete Constraint Combinations:
# All constraint types together
comprehensive_state = phase.state("state",
initial=(0.0, 5.0), # Start in range [0, 5]
final=(95.0, 105.0), # End in range [95, 105]
boundary=(0.0, 150.0) # Stay in range [0, 150] throughout
)
# Mixed constraint types
mixed_state = phase.state("mixed",
initial=0.0, # Fixed start
final=(None, 100.0), # Upper bounded end
boundary=(0.0, None) # Lower bounded path
)
Control Variable Specification#
Controls represent actuator inputs with comprehensive bound specification:
# Unconstrained control (any value allowed)
force = phase.control("force")
# Two-sided bounds (most common)
thrust = phase.control("thrust", boundary=(0.0, 2000.0))
# Symmetric bounds
steering_angle = phase.control("steering", boundary=(-0.5, 0.5))
# Upper bound only
power = phase.control("power", boundary=(None, 1500.0))
# Lower bound only
heating = phase.control("heating", boundary=(0.0, None))
# Fixed control value (constant throughout)
constant_thrust = phase.control("constant", boundary=1000.0)
Control Bound Examples:
# Asymmetric bounds (different positive/negative limits)
braking_force = phase.control("brake", boundary=(-500.0, 100.0))
# Large dynamic range
throttle_percent = phase.control("throttle", boundary=(0.0, 100.0))
# Actuator saturation limits
elevator_deflection = phase.control("elevator", boundary=(-30.0, 30.0))
Controls are optimization variables that the solver adjusts to minimize your objective while satisfying all constraints.
System Dynamics Definition#
Define how your system evolves over time using ordinary differential equations with complete expression flexibility:
Basic Dynamics Patterns:
# Simple integrator dynamics
position = phase.state("position", initial=0.0)
velocity = phase.state("velocity", initial=0.0)
acceleration = phase.control("acceleration", boundary=(-10, 10))
phase.dynamics({
position: velocity, # dx/dt = v
velocity: acceleration # dv/dt = a
})
Complex Dynamics with Mathematical Expressions:
import casadi as ca
# Nonlinear dynamics with trigonometry
x = phase.state("x_position", initial=0.0)
y = phase.state("y_position", initial=0.0)
heading = phase.state("heading", initial=0.0)
speed = phase.state("speed", initial=5.0)
steering = phase.control("steering", boundary=(-0.5, 0.5))
acceleration = phase.control("acceleration", boundary=(-3, 3))
wheelbase = 2.5 # Vehicle parameter
phase.dynamics({
x: speed * ca.cos(heading),
y: speed * ca.sin(heading),
heading: speed * ca.tan(steering) / wheelbase,
speed: acceleration - 0.1 * speed # With drag
})
Dynamics with Time Dependence:
# Time-varying dynamics
phase.dynamics({
position: velocity,
velocity: thrust - 9.81 * (1 + 0.01 * t), # Time-varying gravity
mass: -thrust * fuel_flow_rate * ca.sin(t) # Time-dependent consumption
})
Dynamics with Control Coupling:
# Multiple controls affecting single state
phase.dynamics({
velocity: thrust_main + thrust_aux - drag_force,
attitude: torque_x + torque_y + torque_z,
energy: -power_main - power_aux - power_avionics
})
You must provide dynamics for every state variable in your phase. The expressions can involve any combination of states, controls, time, parameters, and mathematical functions.
Comprehensive Constraint System#
MAPTOR provides multiple constraint types for complete problem specification:
Path Constraints (Applied Continuously):
# Safety and performance bounds
phase.path_constraints(
altitude >= 100, # Minimum altitude
velocity <= 250, # Speed limit
acceleration**2 <= 25, # Acceleration magnitude
fuel_mass >= 0 # Physical constraint
)
# Complex geometric constraints
phase.path_constraints(
(x - 50)**2 + (y - 50)**2 >= 100, # Avoid circular obstacle
ca.sqrt(vx**2 + vy**2) <= v_max, # Vector magnitude limit
ca.atan2(y, x) >= min_angle # Angular constraint
)
# State-dependent constraints
phase.path_constraints(
thrust <= max_thrust * (fuel_mass / initial_mass), # Thrust-to-weight ratio
lift_force <= 0.5 * rho * v**2 * wing_area * cl_max # Aerodynamic limit
)
Event Constraints (Applied at Boundaries):
# Integral term constraints
fuel_consumed = phase.add_integral(thrust * fuel_flow_rate)
energy_cost = phase.add_integral(power**2)
phase.event_constraints(
fuel_consumed <= 100.0, # Fuel budget
energy_cost <= 50.0 # Energy budget
)
# Complex final conditions
phase.event_constraints(
x.final**2 + y.final**2 >= 100, # Final distance constraint
vx.final * ca.cos(heading.final) >= 5.0, # Velocity component
ca.sqrt(x.final**2 + y.final**2 + z.final**2) <= target_radius
)
# Multi-variable relationships
phase.event_constraints(
altitude.final / velocity.final <= glide_ratio,
(mass.initial - mass.final) / fuel_capacity >= 0.8
)
Mesh Configuration#
The mesh controls how accurately your problem is discretized. Higher-order polynomials and more intervals give better accuracy but cost more computation:
# Single interval, 8th-order polynomial
phase.mesh([8], [-1.0, 1.0])
# Three intervals with different polynomial orders
phase.mesh([6, 10, 6], [-1.0, -0.3, 0.3, 1.0])
# Fine discretization for complex dynamics
phase.mesh([4, 4, 4, 4, 4], [-1.0, -0.6, -0.2, 0.2, 0.6, 1.0])
The mesh points define interval boundaries in the normalized domain [-1, 1]. MAPTOR automatically maps these to your actual phase time span.
Choosing a Solver#
MAPTOR provides two solving approaches:
# Fixed mesh: Use your exact mesh specification
solution = mtor.solve_fixed_mesh(problem)
# Adaptive mesh: Automatically refine for high accuracy
solution = mtor.solve_adaptive(
problem,
error_tolerance=1e-6, # Target accuracy
max_iterations=20 # Refinement limit
)
Adaptive solving automatically adds mesh points and increases polynomial degrees until your target accuracy is achieved. Use it for high-precision solutions.
Analyzing Solutions#
Once solved, extract trajectories and analyze results:
# Check if optimization succeeded
if solution.status["success"]:
print(f"Objective value: {solution.status['objective']}")
print(f"Total mission time: {solution.status['total_mission_time']}")
# Get complete trajectories
time_points = solution["time_states"]
position_trajectory = solution["position"]
velocity_trajectory = solution["velocity"]
force_trajectory = solution["force"]
# Analyze specific values
final_position = position_trajectory[-1]
max_speed = max(velocity_trajectory)
# Built-in plotting
solution.plot()
else:
print(f"Optimization failed: {solution.status['message']}")
The solution object provides comprehensive access to all trajectories, final values, and solver diagnostics.
Integral Terms and Accumulated Quantities#
Many optimal control problems involve accumulated quantities over the trajectory duration:
Basic Integral Definition:
# Fuel consumption
fuel_flow = phase.add_integral(thrust * fuel_consumption_rate)
# Energy expenditure
energy_cost = phase.add_integral(power**2)
# Tracking error accumulation
tracking_error = phase.add_integral((position - reference_trajectory)**2)
# Distance traveled
distance = phase.add_integral(ca.sqrt(vx**2 + vy**2))
Complex Integral Expressions:
# Time-varying integrands
time_weighted_cost = phase.add_integral(t * thrust**2)
# State-dependent integrands
altitude_penalty = phase.add_integral(ca.exp(-altitude/1000) * drag_force)
# Multi-variable integrands
combined_cost = phase.add_integral(
fuel_weight * fuel_flow +
time_weight * 1.0 +
control_weight * (thrust**2 + steering**2)
)
Using Integrals in Objectives:
# Minimize single integral
problem.minimize(fuel_flow)
# Weighted combinations
problem.minimize(10*t.final + fuel_flow + 0.1*tracking_error)
# Complex multi-objective formulations
performance = altitude.final + range.final
cost = fuel_flow + maintenance_cost
problem.minimize(cost - performance_weight * performance)
Using Integrals in Constraints:
# Resource budget constraints
phase.event_constraints(
fuel_flow <= fuel_capacity,
energy_cost <= battery_capacity,
heat_generated <= thermal_limit
)
Static Parameter Optimization#
Optimize design parameters that remain constant throughout the mission:
Basic Parameter Definition:
# Unconstrained parameters
design_var = problem.parameter("design_variable")
# Bounded parameters
vehicle_mass = problem.parameter("mass", boundary=(100.0, 500.0))
wing_area = problem.parameter("wing_area", boundary=(10.0, 50.0))
# Upper bounded only
max_power = problem.parameter("power_limit", boundary=(None, 5000.0))
# Lower bounded only
min_thrust = problem.parameter("min_thrust", boundary=(1000.0, None))
# Fixed parameter value
gravity_constant = problem.parameter("gravity", boundary=9.81)
Parameters in Dynamics and Constraints:
# Use parameters in dynamics
phase.dynamics({
velocity: thrust / vehicle_mass - drag_coefficient * velocity**2,
altitude: velocity * ca.sin(flight_path_angle),
fuel_mass: -thrust / (specific_impulse * gravity_constant)
})
# Use parameters in constraints
phase.path_constraints(
thrust <= max_power / propulsion_efficiency,
lift_force <= 0.5 * air_density * velocity**2 * wing_area * max_cl
)
# Use parameters in objectives
total_cost = vehicle_mass * cost_per_kg + wing_area * manufacturing_cost
mission_performance = altitude.final + range.final
problem.minimize(total_cost - performance_weight * mission_performance)
Parameter Optimization Examples:
# Vehicle design optimization
engine_thrust = problem.parameter("engine_thrust", boundary=(1000, 5000))
fuel_capacity = problem.parameter("fuel_tank", boundary=(100, 1000))
aerodynamic_efficiency = problem.parameter("l_over_d", boundary=(5, 20))
# Trajectory and design co-optimization
structural_mass = vehicle_mass - fuel_capacity
problem.minimize(
structural_mass + # Minimize vehicle mass
fuel_consumed + # Minimize fuel usage
0.1 * (t.final - target_time)**2 # Minimize time deviation
)
Parameter Initial Guesses:
For complex optimization problems with static parameters, providing good initial guesses significantly improves solver convergence and solution quality:
# Define parameters with bounds
vehicle_mass = problem.parameter("mass", boundary=(100, 500))
drag_coefficient = problem.parameter("drag", boundary=(0, 0.1))
wing_area = problem.parameter("wing_area", boundary=(10, 50))
# Set initial guesses using parameter names
problem.parameter_guess(
mass=300.0, # Start optimization near middle of range
drag=0.05, # Reasonable aerodynamic estimate
wing_area=25.0 # Initial design point
)
Advanced Parameter Guess Strategies:
# Physics-based guess selection
thrust_to_weight = 1.2 # Desired T/W ratio
estimated_mass = 1000.0
required_thrust = thrust_to_weight * estimated_mass * 9.81
max_thrust = problem.parameter("max_thrust", boundary=(5000, 15000))
problem.parameter_guess(max_thrust=required_thrust)
# Engineering constraint-based guesses
max_heat_rate = problem.parameter("max_q_dot", boundary=(500, 1000))
safety_margin = 0.8 # Conservative initial design
problem.parameter_guess(max_q_dot=1000 * safety_margin)
Parameter Guess Validation:
# The system validates parameter names exist
mass = problem.parameter("vehicle_mass", boundary=(100, 1000))
# This works - parameter exists
problem.parameter_guess(vehicle_mass=500.0)
# This raises ConfigurationError - parameter name doesn't exist
# problem.parameter_guess(mass=500.0) # Wrong name
# Parameters without explicit guesses default to 0.0
wing_span = problem.parameter("wing_span", boundary=(5, 15))
# No guess provided - solver starts with 0.0
Objective Function Specification#
Define scalar optimization objectives with complete expression flexibility:
Single Objective Types:
# Minimum time
problem.minimize(t.final)
# Maximum final altitude
problem.minimize(-altitude.final) # Negative for maximization
# Minimum fuel consumption
fuel_used = phase.add_integral(fuel_flow_rate * thrust)
problem.minimize(fuel_used)
# Minimum control effort
control_effort = phase.add_integral(thrust**2 + steering**2)
problem.minimize(control_effort)
Multi-Objective Formulations:
# Weighted combination
performance = range.final + altitude.final
cost = fuel_used + time_penalty * t.final
problem.minimize(cost - 10*performance)
# Trade-off objectives
problem.minimize(
fuel_weight * fuel_consumed +
time_weight * t.final +
accuracy_weight * tracking_error +
smoothness_weight * control_effort
)
Complex Objective Expressions:
# Nonlinear objective combinations
efficiency_metric = range.final / fuel_consumed
safety_margin = ca.sqrt(x.final**2 + y.final**2) - obstacle_radius
problem.minimize(-efficiency_metric - safety_margin)
# Parameter-dependent objectives
total_system_mass = structural_mass + fuel_mass.final
payload_fraction = payload_mass / total_system_mass
problem.minimize(-payload_fraction + cost_per_kg * total_system_mass)
Providing Initial Guesses#
For complex problems, providing good initial guesses helps the solver converge. MAPTOR provides a phase-specific guess system through the phase.guess()
method.
Simple Time Guesses
For most problems, guessing final times is sufficient:
# Simple time guess
phase.guess(terminal_time=10.0)
Complete Trajectory Guesses
For challenging problems, provide complete trajectory guesses. Arrays must match your mesh configuration exactly:
# First, set up your mesh
phase.mesh([4, 6], [-1.0, 0.0, 1.0]) # Two intervals: degree 4 and degree 6
This creates two mesh intervals with specific array requirements:
State arrays: For polynomial degree N, you need N+1 points
Control arrays: For polynomial degree N, you need N points
Array structure:
[num_variables, num_points_per_interval]
import numpy as np
# Example with 2 states, 1 control, mesh [4, 6]
states_guess = []
controls_guess = []
# Interval 1: degree 4 polynomial needs 5 state points, 4 control points
states_interval_1 = np.array([
[0.0, 0.2, 0.4, 0.6, 0.8], # State 1: 5 points
[0.0, 0.1, 0.3, 0.6, 1.0] # State 2: 5 points
])
controls_interval_1 = np.array([
[1.0, 0.8, 0.6, 0.4] # Control 1: 4 points
])
# Interval 2: degree 6 polynomial needs 7 state points, 6 control points
states_interval_2 = np.array([
[0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4], # State 1: 7 points
[1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4] # State 2: 7 points
])
controls_interval_2 = np.array([
[0.4, 0.2, 0.0, -0.2, -0.4, -0.6] # Control 1: 6 points
])
# Collect intervals in order
states_guess = [states_interval_1, states_interval_2]
controls_guess = [controls_interval_1, controls_interval_2]
# Provide complete guess
phase.guess(
states=states_guess,
controls=controls_guess,
terminal_time=12.0,
integrals=5.0 # If you have integral terms
)
Easy Guess Generation
For simple trajectories, use linear interpolation:
def generate_linear_guess(mesh_degrees, initial_values, final_values):
states_guess = []
for degree in mesh_degrees:
num_points = degree + 1
# Linear interpolation from initial to final
states = np.zeros((len(initial_values), num_points))
for i, (init_val, final_val) in enumerate(zip(initial_values, final_values)):
states[i, :] = np.linspace(init_val, final_val, num_points)
states_guess.append(states)
return states_guess
# Usage
phase.mesh([4, 4], [-1.0, 0.0, 1.0])
states_guess = generate_linear_guess(
mesh_degrees=[4, 4],
initial_values=[0.0, 0.0], # [position, velocity]
final_values=[1.0, 0.0] # [position, velocity]
)
phase.guess(states=states_guess, terminal_time=8.0)
Multiphase Guesses
For multiphase problems, provide guesses for each phase individually:
# Phase 1 guess
phase1.guess(
states=states_guess_phase1,
controls=controls_guess_phase1,
terminal_time=5.0
)
# Phase 2 guess
phase2.guess(
states=states_guess_phase2,
controls=controls_guess_phase2,
terminal_time=10.0
)
When to Use Detailed Guesses
Simple problems: Just guess terminal times
Complex dynamics: Provide trajectory guesses that roughly follow expected behavior
Multiple local minima: Good guesses help find the right solution
Convergence issues: Detailed guesses often resolve solver failures
Multiphase Problems#
Complex missions often require multiple phases with different dynamics or operating modes:
problem = mtor.Problem("Rocket Launch Mission")
# Phase 1: Powered ascent
ascent = problem.set_phase(1)
t1 = ascent.time(initial=0.0, final=120.0)
h1 = ascent.state("altitude", initial=0.0)
v1 = ascent.state("velocity", initial=0.0)
m1 = ascent.state("mass", initial=1000.0)
thrust1 = ascent.control("thrust", boundary=(0, 5000))
ascent.dynamics({
h1: v1,
v1: thrust1/m1 - 9.81,
m1: -thrust1 * 0.001 # Fuel consumption
})
# Phase 2: Coasting flight (automatically linked)
coast = problem.set_phase(2)
t2 = coast.time(initial=t1.final, final=300.0) # Continuous time
h2 = coast.state("altitude", initial=h1.final) # Continuous altitude
v2 = coast.state("velocity", initial=v1.final) # Continuous velocity
m2 = coast.state("mass", initial=m1.final) # Continuous mass
coast.dynamics({
h2: v2,
v2: -9.81, # No thrust, only gravity
m2: 0 # No fuel consumption
})
When you reference phase1_variable.final
in phase2_variable.initial
, MAPTOR automatically creates the mathematical linkage between phases.
Different Phase Configurations:
# Free transition time
t2 = coast.time(initial=t1.final) # Time continues, final time optimized
# Fixed phase duration
t2 = coast.time(initial=t1.final, final=t1.final + 200.0)
# Bounded transition time
t2 = coast.time(initial=t1.final, final=(250, 350))
Each phase can have completely different dynamics, constraints, and mesh configurations.
Advanced Problem Types#
Minimum Time Problems:
t = phase.time(initial=0.0) # Free final time
# ... define states, controls, dynamics
problem.minimize(t.final) # Minimize mission duration
Fuel-Optimal Problems:
fuel_used = phase.add_integral(thrust * fuel_flow_rate)
problem.minimize(fuel_used)
Tracking Problems:
# Define reference trajectory
reference_position = t * desired_speed
# Minimize tracking error
tracking_error = phase.add_integral((position - reference_position)**2)
problem.minimize(tracking_error)
Design Optimization:
# Optimize both trajectory and design
wing_span = problem.parameter("wing_span", boundary=(5, 15))
engine_power = problem.parameter("power", boundary=(100, 500))
# Multi-objective: maximize performance, minimize cost
performance = altitude.final + range.final
cost = wing_span**2 + engine_power
problem.minimize(cost - 10*performance)
Common Patterns and Tips#
Scaling for Numerical Stability:
# Scale large values
altitude_km = phase.state("altitude_km", initial=0.0) # km instead of m
velocity_kmh = phase.state("velocity_kmh", initial=0.0) # km/h instead of m/s
# Use in dynamics with appropriate scaling
phase.dynamics({
altitude_km: velocity_kmh / 3.6, # Convert km/h to km/s
# ...
})
State Bounds for Physical Realism:
# Prevent nonphysical solutions
altitude = phase.state("altitude", boundary=(0, None)) # Can't go underground
speed = phase.state("speed", boundary=(0, None)) # Can't go backwards
fuel = phase.state("fuel", boundary=(0, 1000)) # Fuel limits
Control Smoothing:
# Add control rate penalty for smoother solutions
control_effort = phase.add_integral(thrust**2)
control_smoothness = phase.add_integral((thrust - previous_thrust)**2)
problem.minimize(control_effort + 0.1*control_smoothness)
Solver Options#
Fine-tune solver behavior for challenging problems:
# Fixed mesh with custom solver settings
solution = mtor.solve_fixed_mesh(
problem,
nlp_options={
"ipopt.print_level": 5, # Verbose output
"ipopt.max_iter": 3000, # More iterations
"ipopt.tol": 1e-8 # Tighter tolerance
}
)
# Adaptive with custom accuracy
solution = mtor.solve_adaptive(
problem,
error_tolerance=1e-8, # High accuracy
max_iterations=30, # More refinement cycles
min_polynomial_degree=4, # Start with higher order
max_polynomial_degree=15 # Allow very high order
)
Summary: Complete MAPTOR Capabilities#
You now have comprehensive knowledge of MAPTOR’s problem definition capabilities:
Core Framework: - Problem Construction: Incremental building with phases, variables, dynamics - Variable System: Time, states, and controls with unified constraint specification - Constraint Architecture: Bounds, paths, events, and automatic multiphase linking
Advanced Capabilities: - Static Parameters: Design optimization alongside trajectory optimization - Integral Terms: Accumulated quantities for objectives and constraints - Multiphase Problems: Complex missions with automatic phase continuity - Initial Guess System: From simple time guesses to detailed trajectory specifications
Problem Types Covered: - Minimum-time problems - Fuel-optimal trajectories - Tracking and regulation - Design optimization - Multiphase missions
Practical Knowledge: - Numerical scaling strategies - Physical constraint enforcement - Control smoothing techniques - Solver configuration options - Mesh design principles
Building Your Problem-Solving Expertise#
Recommended Learning Progression:
Start Simple: Begin with single-phase minimum-time problems to solidify the basic workflow
Add Constraints: Practice with path constraints and bounded controls
Include Integrals: Implement fuel-optimal and tracking problems
Go Multiphase: Design missions with multiple operating phases
Optimize Designs: Combine trajectory and parameter optimization
Next Learning Resources:
Solution Analysis: Study Working with Solution Data to master working with optimization results
Complete Examples: Explore Examples Gallery for fully-worked problems with mathematical formulations
API Reference: Use API Reference for detailed function documentation and advanced options
When You’re Ready for Real Problems:
You now understand all the tools needed to formulate any optimal control problem in MAPTOR. The key to success is starting with the simplest version of your problem, getting it working, then gradually adding complexity as you verify each component.